Ticket Analysis Script
Python script for analyzing support tickets to identify common patterns and keywords in LIMS-related issues.
Requirements
pip install pandas
Usage
- Place your CSV file named
tickets.csv
in the same directory - Run the script:
python ticket_analysis.py
What It Does
- Loads ticket data from CSV file
- Extracts common LIMS error keywords from descriptions
- Counts frequency of each keyword/pattern
- Shows top 5 most common issues with example tickets
Keywords Detected
- sample
- login
- slow
- error
- batch
- test
- patient
- report
- connection
- timeout
Script Code
import pandas as pd
from collections import Counter
import re
# Load your CSV
df = pd.read_csv('tickets.csv')
# Extract keywords from descriptions
def extract_keywords(text):
# Common LIMS error patterns
keywords = ['sample', 'login', 'slow', 'error', 'batch', 'test', 'patient', 'report', 'connection', 'timeout']
found = []
text_lower = str(text).lower()
for keyword in keywords:
if keyword in text_lower:
found.append(keyword)
return found
# Apply to descriptions
df['keywords'] = df['description'].apply(extract_keywords)
# Count patterns
all_keywords = [keyword for sublist in df['keywords'] for keyword in sublist]
keyword_counts = Counter(all_keywords)
print(keyword_counts)
# Show tickets for top keywords
for keyword, count in keyword_counts.most_common(5):
print(f"\n=== {keyword.upper()} ({count} tickets) ===")
matching_tickets = df[df['keywords'].apply(lambda x: keyword in x)]
for idx, row in matching_tickets.head(3).iterrows():
print(f"- {row['short_description']}")
Expected CSV Format
Your tickets.csv
should have columns:
- description
: Full ticket description
- short_description
: Brief ticket summary
Last updated: 2025-08-26 20:00 UTC